

DATE

8 Calculus Assessment Resources

1. The function f whose graph is shown below is continuous at which of the following points?

- nonremovable discontinuity at which of the following points or sets of points?
 - (A) x = -3 (B) x = -1 (C) x = 1(D) x = 3 (E) x = -3 and x = -1
- **3.** Sketch a possible graph for a function *f* that has the stated properties. f(-2) exists, $\lim f(x)$ exists,

4. Find the average rate of change of the function

 $f(x) = 100 - 16x^2$ over the interval [0, 2].

5. Find the slope of the curve $y = x^2 + x$ at x = 3.

cliff. Find the speed of the rock at t = 3.5 sec.

(C) 9

6. The equation for free fall on Mars is $s = 6.1t^2$ ft, where t

is in seconds. Assume a rock is dropped from a 100-ft

Determine whether the curve y = f(x) has a tangent at

(B) 8

7. Let $f(x) = \begin{cases} x^2 - 2, & x \le 1\\ 1.5x - 2.5, & x > 1 \end{cases}$

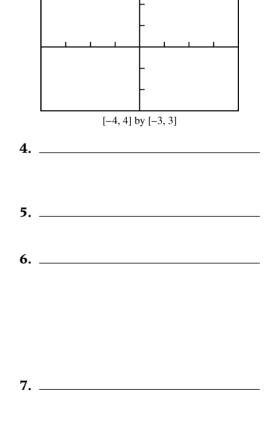
x = 1. If it does, give its slope.

(B) 2

(E) No tangent

f is not continuous at x = -2, and $\lim f(x)$ does not exist.

(B) -36 (C) -32 (D) 32 (E) 36


(D) 10

(B) 21.75 ft/sec

(C) 2.5

(D) 42.7 ft/sec

(E) 11

© 2007 Pearson Education, Inc.

NAME

2. _____

3.

1. _

y = f(x)

[-4, 4] by [-3, 3]

(A) -64

(A) 4 ft/sec

(A) 1.5

(D) 3

(C) 28.57 ft/sec

(E) 74.725 ft/sec

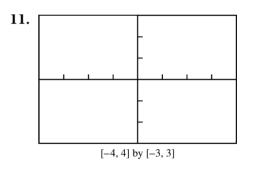
(A) 7

Directions: Show all steps leading to your answers, including any intermediate results obtained using a graphing utility. Use the back of the test or another sheet of paper if necessary.

1.	Use the graph to estimate the limits and value of the function, or explain why the limits do not exist.	1. (a) (b)
	(a) $\lim_{x \to 1^{-}} g(x)$ (b) $\lim_{x \to 1^{+}} g(x)$ (c) $\lim_{x \to 1} g(x)$ (d) $g(1)$	(d)
	Determine the limit by substitution. $\lim_{x \to -3} (7 - 2x - x^2)$	2
3.	Assume that $\lim_{x \to b} f(x) = -4$ and $\lim_{x \to b} g(x) = 8$. Find the value of $\lim_{x \to b} (f(x) - g(x))$. (A) -12 (B) -2 (C) $-1/2$ (D) $1/2$ (E) 4	3
	Find the limit graphically. Show how the Sandwich Theorem can be used to confirm your answer. $\lim_{x\to 0} \left(3 + x^2 \sin \frac{1}{x}\right)$	4
5.	For $f(x) = \frac{ 4 - 3x }{6x + 1}$, use graphs and tables to find (a) $\lim_{x \to \infty} f(x)$ and (b) $\lim_{x \to -\infty} f(x)$. (c) Identify any horizontal asymptotes.	5. (a) (b) (c)
6.	Consider the function $f(x)$ given below. Which of the following appear to be true about $f(x)$? I. The line $y = \frac{1}{2}$ is a horizontal asymptote. II. $\lim_{x \to 2} f(x) = 2$ III. The line $x = 1$ is a vertical asymptote. IV. $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x)$	6
	(A) I and III (B) III and IV (C) I, II, and III (D) I, III, and IV (E) I, II, III, and IV (E) I, II, III, and IV	

7. (a) Find the vertical asymptotes of the graph of

$$f(x) = \frac{3-x}{x^2 - 16}$$


- (b) Describe the behavior of f(x) to the left and right of each vertical asymptote.
- 8. For the function $y = e^x 2x^3 + 15x$, find:
 - (a) a simple basic function right end behavior model, and
 - (b) a simple basic function left end behavior model.
- 9. Find the points of discontinuity of the function
 - $y = \frac{x^2 3x 4}{x^2 7x + 12}$. For each discontinuity, identify

the type of discontinuity (removable, jump, infinite, or oscillating).

- 10. Find a value *a* so that the function $f(x) = \begin{cases} 5 ax^2, & x < 1\\ 4 + 3x, & x \ge 1 \end{cases}$ is continuous.
- 11. Sketch a possible graph for a function *f*, where f(-2) exists, $\lim_{x\to -2} f(x) = 2$, and *f* is not continuous at x = -2.

- 9. _____

10. _____

- 12. Use the concept of composite functions to explain why $h(x) = |x^2 4x 6|$ is a continuous function.
- 13. Find the average rate of change of the function $f(x) = x^3 x^2 4$ over the interval [-3, 5].
- 14. For the function f(x) = x² + 9 at the point (2, 13), find
 (a) the slope of the curve
 - (b) an equation of the tangent line
 - (c) an equation of the normal line
- 15. The equation for free fall at the surface of the planet Quixon is $s = 3.8t^2$ m with *t* in sec. Assume a rock is dropped from the top of a 400-m cliff. Find the speed of the rock at t = 6 sec.
- 13.

 14. (a)

 (b)

12. _____

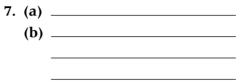
- (c) _____
- 15. _____

TEST	DATE
B Chapter 2	NAME

Directions: Show all steps leading to your answers, including any intermediate results obtained using a graphing utility. Use the back of the test or another sheet of paper if necessary.

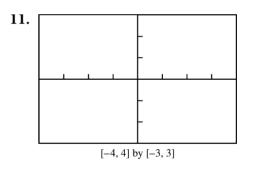
1. Use the graph to estimate the limits and value of the function, or explain why the limits do not exist. (a) $\lim_{x\to 2^-} f(x)$ (b) $\lim_{x\to 2^+} f(x)$ (c) $\lim_{x\to 2} f(x)$ (d) $f(2)$	1. (a)
2. Determine the limit by substitution. $\lim_{x \to -2} (-6x^2 + 5x + 12)$	2
3. Assume that $\lim_{x \to b} f(x) = -3$ and $\lim_{x \to b} g(x) = -2$. Find the value of $\lim_{x \to b} (f(x) - g(x))$. (A) -5 (B) -1 (C) 1 (D) 5 (E) 6	3
4. Find the limit graphically. Show how the Sandwich Theorem can be used to confirm your answer. $\lim_{x \to 0} \left(5 - x^2 \cos \frac{1}{x} \right)$	4
5. For $f(x) = \frac{ 4x + 3 }{-2x + 6}$, use graphs and tables to find (a) $\lim_{x \to \infty} f(x)$ and (b) $\lim_{x \to -\infty} f(x)$. (c) Identify any horizontal asymptotes.	5. (a) (b) (c)
6. Consider the function $g(x)$ given below. Which of the following appear to be true about $g(x)$? I. The line $x = \frac{1}{2}$ is a vertical asymptote. II. $\lim_{x \to -1} g(x) = \frac{1}{2}$ III. The line $y = -1$ is a horizontal asymptote. IV. $\lim_{x \to +\infty} g(x) = \lim_{x \to -\infty} g(x)$ (A) I and II (B) I and III (C) II and III (D) II and IV (E) II, III and IV	6

B Chapter 2 (continued)


7. (a) Find the vertical asymptotes of the graph of

$$f(x) = \frac{x - 1}{x^2 + 2x - 8}$$

- (b) Describe the behavior of f(x) to the left and right of each vertical asymptote.
- **8.** For the function $y = 3x^2 5x + 7^{-x}$, find:
 - (a) a simple basic function right end behavior model, and
 - (b) a simple basic function left end behavior model.
- 9. Find the points of discontinuity of the function
 - $y = \frac{x^2 3x 4}{x^2 7x + 12}$. For each discontinuity, identify


the type of discontinuity (removable, jump, infinite, or oscillating).

- 10. Find a value *m* so that the function $g(x) = \begin{cases} mx + 4, & x \le 3\\ x^2 - 11, & x > 3 \end{cases}$ is continuous.
- 11. Sketch a possible graph for a function *f*, where $\lim_{x\to 3} f(x)$ exists, f(3) = 1, and *f* is not continuous at x = 3.

- 8. (a) ______ (b) _____
- 9. _____

10. _____

12. _____

- 12. Use the concept of composite functions to explain why $h(x) = \sin(x^5 + 2x 3)$ is a continuous function.
- 13. Find the average rate of change of the function $f(x) = 2x^3 5x + 3$ over the interval [-2, 1].
- 14. For the function f(x) = x² 4 at the point (4, 12), find
 (a) the slope of the curve
 - (b) an equation of the tangent line
 - (c) an equation of the normal line
- 15. The equation for free fall at the surface of the moon is $s = 31.8t^2$ in. with *t* in sec. Assume a rock is dropped from the top of a 12,000-in. cliff. Find the speed of the rock at t = 4 sec.
- 13. _____ 14. (a) _____
 - (b) ______ (c) _____
- 15. _____